
Git Workshop

Spring 2022

Hello!

Matthew Dong
Spark Blue Instructor

Yuhan Liu
Spark Blue VP

Logistical Expectations
● Communication

○ In general, slack all of Yuhan, Grace, & Christina in a single thread for all communication
(unless personal)

● Attendance
○ Come prepared to weekly meetings (bring laptop + well-rested brain) and be prepared to

participate/follow along
○ Let Yuhan, us know in a single Slack thread at least 24 hours in advance about any conflicts

(unless COVID-related or emergency)
● Deliverables

○ Please turn in your deliverables by the stated deadline!
○ This isn’t class, so please let us know if you need an extension on an deliverable or have

any concerns
■ But note that deliverables build on each other, so if you get super behind on one, you’ll

get a slow start to the next :(
● Are you stuck or have any questions?

○ #spark-overflow, #sp22-blue-dev
○ Slack us / instructors!! (include everyone in thread for faster response time)

Introductions

● Name
● Year
● Major
● Spring-related vibes question

Getting
Started

Overview

● What is Git?
● What is GitHub?
● Why do we need it?

What Exactly is Git?

Git is a software for tracking changes in files.

● Programmers use git to track changes made to code.
● Git synchronizes code between different people.

What Exactly is GitHub?

GitHub is a user interface, or UI, wrapper around Git, much like Spotify is
a UI wrapper around music. In these cases, a core technology (Git;
music) is wrapped in a graphical user interface (GitHub; Spotify).

● Sites like GitHub host Git repositories, or files that are tracked by Git.

Why do we need Git?

● Git allows collaborators to make independent changes to their file
version by merging the changes into one file.
○ By pulling (accessing the file) and pushing (updating the file),

both you and your collaborators have access to the most
up-to-date version.

Why do we need Git?

● Git allows collaborators to make independent changes to their file
version by merging the changes into one file.
○ By pulling (accessing the file) and pushing (updating the file),

both you and your collaborators have access to the most
up-to-date version.

● Git also allows programmers to test changes to their code without
changing the original.
○ If you don’t like the changes you made, you can revert to an older

version of your file.

Is GitHub the Only One of Its Kind?

There are other tools that do what GitHub does.

● Bitbucket
● Git Tower
● Git Lab

This is only a partial list.

https://bitbucket.org/
https://www.git-tower.com/
https://about.gitlab.com/

Git Basics

Overview

● Creating repos

● Adding files

● Commiting files into the repo

Creating a New Repository

git init

Alternatively, you can create your own repo by creating your own
folder and uploading it to GitHub.

Creating a New Repository

git init

Alternatively, you can create your own repo by creating your own
folder and uploading it to GitHub.

In order to put a project under Git’s control, you’ll need to initialize
the process inside the project’s root folder, add the files to Git’s
staging area, then commit the files.

Making Changes in a Repo

1. git add

2. git commit

3. git push

More on each step in the next slides!

Adding Files to the Repository

git add <filename>

Once you’re ready to commit work to the “staging area”, you’ll do so
via the add flag.

This tells git to include the file.

Committing Files to the Repository

git commit -m <message>

With files added to the staging area, you’re now ready to commit.
Git commit tells git to save a version of the repo.

Committing Files to the Repository

git commit -m <message>

With files added to the staging area, you’re now ready to commit.
Git commit tells git to save a version of the repo.

Git commit allows you to include a brief message about what
you’ve changed. For example:

git commit -m 'Change how keyboard emphasis is styled

Remember: “keep your changes small, and commit often.”

Let’s play with Git!

https://github.com/PennSpark/git-workshop/blob/main/workshop.
md#starting-your-journey

https://github.com/PennSpark/git-workshop/blob/main/workshop.md#starting-your-journey
https://github.com/PennSpark/git-workshop/blob/main/workshop.md#starting-your-journey

Git
Workflows

Overview

● VCS States

● Status

● Checking differences

The 3 States of a File in Git’s View

Files in a Git-controlled
repository can only be in
one of three states:
tracked, ignored, or
untracked.

● Tracked means Git will track
changes and stages associated
with a file.

● Ignored means Git will explicitly
ignore modifications, including
deletions, of a file.

● Untracked means Git is unaware
of a file present in a repository.

Repo (Git Directory) → Working Directory → Staging Area/Index

As you work with files, their changes move
between the working directory, the index,
and the Git directory (repo).

● Modified files live in the working directory
● staged files (via the git add command)

reside in the index
● committed files (via the git commit

command) go in the Git directory.

The Pathways of File Changes

Checking The Repository’s Status

git status

To see differences sitting in the working directory, changes set in
the staging area, untracked files, deleted files, etc, run this
command

Checking Differences

git diff

The git diff command shows the differences between the last
committed change(s) and the current one(s) in the working
directory.

Checking Differences

git diff

The git diff command shows the differences between the last
committed change(s) and the current one(s) in the working
directory.

The flag --cached shows changes placed in the staging area that
have not yet been committed. If you decide that you want to revert
those changes back into the working directory, you can run git reset.

Checking Differences

git log

To display the entire history of a repository, run git log. Append the
--reverse flag to the command to show the history in reverse.

git log -p <filename>

To display the entire history of a file, run git log -p
<filename>.

Discarding Changes; Resetting a File

Use git checkout <filename> to discard all changes to a file and
revert back to the state of the file at the last commit.

Let’s do some more with Git!

https://github.com/PennSpark/git-workshop/blob/main/works
hop.md#lets-see-what-just-happened

Public
Repos

Overview

● Cloning

● Pushing/Pulling

● Forking & Pull Requests

Cloning a Repository

git clone

Cloning a repository replicates the entire project and Git repository.

For example, git clone git@github.com:facebook/react.git will create a folder
called react in the directory from where you invoked the clone command
and replicate the entire project and Git history.

Pushing: Adding your own updates

When changes have been placed in the staging area, then
committed to the Git directory, they are ready to be pushed
(assuming you have a remote repository). The process is simple:

git push

Your changes will be fetched from your local machine and merged
into the remote repository.

Pulling: Accessing collaborators’ updates

If you’re working with someone else, or you simply use multiple
machines, you’ll need to pull changes made by others (or by you on a
different machine) before you can push your changes. Again, the
process is simple:

git pull

Your local machine will perform Git’s fetch feature, followed by its
merge feature.

Pull Requests

A pull request means that you as the owner of a forked branch of
a project are requesting that the owner of the original branch
pull your changes into her/his repository. You may or may not
have write access to the repository into which you want your
changes pulled.

Removing Files

34

Removing tracked files can be done in one of two ways.

The first method excludes Git altogether; you simply delete files
as you normally would. You still add the deleted files to the
staging area as you would any other file. (Yes, you’re even
required to stage deleted files.)

Removing Files

35

The first method excludes Git altogether; you simply delete files
as you normally would. You still add the deleted files to the
staging area as you would any other file. (Yes, you’re even
required to stage deleted files.)

The second method requires the git rm command. When files are
deleted using git rm, deleted files are automatically staged, saving
you the trouble of carrying out the git add command. This is the
only difference between both file removal methods.

Forking

Forking means that the forked branch is going in another direction.
This could be to expand on work already done, or to issue a pull
request at a later time.

Consider Linux: At some point, the folks at Amazon forked the
Linux project to create the Kindle operating system. The Linux
kernel has also been forked to create different variants of Linux:
Debian, Fedora, etc.

Branching

Overview

● Definition

● Useful Commands

Branching

Branching is the ability to take your project in another direction
from a certain point. This allows you to create new work based on
an existing snapshot of a project without affecting the project.

The primary branch Git creates is called master. This is merely a
convention; you can choose to rename the branch anything else.

Branching

A common branching procedure is to create a dev branch in which
to do all development, then merge dev into master at certain points
in the development of a project.

Branching

git branch
shows all branches of code.

git branch <branch_name>
makes a new branch.

git checkout <branch_name>
 switches to working on a different branch
– we call this “checking out” a different branch
S

Branching

The following command will look at all of the
remote branches:

git branch -r

The following command will look at all of the
local branches (to your machine).

git branch -l

Branching

Branches can be made from other branches. Let’s create a feature
branch from dev called new-navigation. First, we’ll checkout out the
dev branch:

git checkout dev

And now we create our new branch:

git checkout -b new-navigation

Let’s do some more with Git!

https://github.com/PennSpark/git-workshop/blob/main/works
hop.md#branching

Merging

Overview

● Definition

● Useful Commands

● Rebasing

Merging

git merge

Branches are typically merged into other branches, although they don’t
have to be.Issuing the git merge <branch> command merges <branch> into
the current branch. For example, say you want to merge dev into master.

First, checkout master:

git checkout master

Then merge dev:

git merge dev

Merge Conflicts

When collaborators make different changes to the same lines of code, a
“merge conflict” arises… and git is unable to automatically solve it.

Git will raise a conflict flag and show you all the versions of the line(s) with
conflicting changes.

Merging

git merge --no-ff

You would have noticed that The Terminal did not ask for any input
from you. Most times, however, you want to assign a message to
the merge. Appending the --no-ff (for no fast forward) to the merge
command invokes your text editor so you can associate a message
with the merge. Thus, the previous command could be modified as
such:

git merge --no-ff dev

Note on Rebasing

Consider what happens when you start working on a new feature in
a dedicated branch, then another team member updates the main
branch with new commits that are relevant to your feature. This
results in a forked history that looks like the following:

Rebasing (cont.)

The easiest way to resolve this would be to merge the main branch
into the feature branch by doing the following:

git checkout feature
git merge main

This creates a new “merge commit” in the feature branch that ties
the history of both branches. This is nice, because it is
non-destructive but can pollute your feature branch history.

The Rebase Option

As an alternative to merging, you can rebase the feature branch
onto the main branch using the following commands:

git checkout feature
git rebase main

This moves the entire feature branch to begin on top of the tip of the
main branch. Instead of using a merge commit, rebase rewrites the
project history by creating brand new commits for each commit in
the original branch

Visual Comparison

Let’s do some more with Git!

https://github.com/PennSpark/git-workshop/blob/main/works
hop.md#merging

Resources

Overview

● Cheat Sheets

● Deliverable

Cheat Sheets

There are myriad of cheat sheets online. Here are just a few:

•

•

•

• Atlassian PDF

GitHub PDF

Git Tower HTML and other formats and languages

Andrew Peterson of NDP Software A fun, interactive cheat sheet

https://www.atlassian.com/dms/wac/images/landing/git/atlassian_git_cheatsheet.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://www.git-tower.com/blog/git-cheat-sheet/
http://ndpsoftware.com/git-cheatsheet.html

Suggested Readings

Git for Humans by David Demaree.
Published by A Book Apart, which is known for publishing easy-to-understand short
books that are well-designed.

Pro Git by Scott Chacon and Ben Straub.
Free in eBook formats, this is a good reference and very detailed.

Git Pocket Guide by Richard Silverman.
Available for free online, this book is a good, strong reference, and, in
paperback, an easy book to carry.

Version Control with Git by Jon Loeliger and Matthew McCullough. Every
detail you’d want to know about Git is contained in this tome.

https://git-scm.com/book/en/v2
http://chimera.labs.oreilly.com/books/1230000000561/index.html
http://shop.oreilly.com/product/0636920022862.do

Week 1 Deliverable: About Me Card

DUETASK Your task in this assignment, should you choose to accept it, is to write a simple README.md file that
displays information about you on your GitHub. This can include your major, hobbies, and other interests.
The instructions are here.

Requirements:
● README.md must show up on your GitHub Profile (GitHub setup guide here)
● Must use local code editor & local repository to edit README file (instead of just using GitHub GUI)
● Be creative! Feel free to include whatever you want to!

2/13

Example Submit Here

https://docs.google.com/document/d/1zBn64n5iF_hQqP9H4NQpJ0FaoTBICiYdh-6pj3WietM/edit?usp=sharing
https://docs.google.com/document/d/1AC-qKL9q2_K3-Gui8bi_uilmIZMXiVtVw0ilVBcsNsA/edit?usp=sharing
https://docs.google.com/forms/d/e/1FAIpQLSdIZGO7x45w63jUsxG7j7SIY4TUfcjGEixY2znkwP34J5P5Ow/viewform?usp=sf_link

